Summary Table for Statistical Techniques(You may wish to include this information in the 1 sheet paper you are permitted to use on the final exam.)

ESTIMATES

Inference	Parameter	Statistic	Type of Data	Examples	Analysis	Conditions
Estimating a proportion	One population proportion p	sample proportion \hat{p}	categorical (binary)	What is the proportion of males in the world? What is the proportion of students that smoke?	1-proportion Z-interval $\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	n $\hat{p} \ge 10$ and n $(1-\hat{p}) \ge 10$
Estimating a mean	One population mean µ	sample mean $\frac{\overline{x}}{x}$	quantitative	What is the average weight of adults? What is the average cholesterol level of adult females?	1-sample t-interval $\overline{x} \pm t^* \frac{s}{\sqrt{n}}$	data approximately normal or have a large sample size $(n \ge 30)$
Estimating the difference of two proportions	difference in two population proportions P ₁ -P ₂	difference in two sample proportions $\hat{p}_1 - \hat{p}_2$	categorical (binary)	Are the percentages of male and female smokers different? Are the percentages of upper- and lower- class binge drinkers different?	two-proportions Z-interval $(\hat{p}_1 - \hat{p}_2) \pm \\ z^* \times s.e{\hat{p}_1 - \hat{p}_2}$ See notes for s.e. formula	independent samples from the two populations $ n \ \hat{p} \geq 10 \ \text{and} \ (1-n) \ \hat{p} \geq 10 $ for each sample
Estimating the difference of two means	difference in two population means μ_1 - μ_2	difference in two sample means $\overline{x}_1 - \overline{x}_2$	quantitative	Are the mean GPAs of males and females different? Do vitamin C takers get, on average, fewer colds than non vitamin C takers?	two-sample t-interval $(\overline{x}_1 - \overline{x}_2) \pm t^* \times s.e{\overline{x}_1 - \overline{x}_2}$ See text, page 445, for the s.e. of the difference	independent samples from the two populations data in each sample are about normal or large samples $(n_i \geq 30)$
Estimating a mean with paired data	mean of paired difference μ_D	sample mean of difference \overline{x}_d	quantitative	Is there a difference in pulse rates, on the average, before and after exercise?	paired t-interval $\overline{x}_d \pm t^* \frac{s_d}{\sqrt{n}}$	differences approximately normal or

TESTS

Inference	Parameter	Statistic	Type of Data	Examples	Analysis	Conditions
Test about a mean	One population mean µ	sample mean \bar{x}	quantitative	Is the average GPA of juniors at Penn State higher than 3.0? Is the average Winter temperature in State College less than 42°F?	$\begin{split} H_o \colon \mu &= \mu_o \\ H_a \colon \mu \neq \mu_o \text{or} \ H_a \colon \mu > \mu_o \\ \text{or} H_a \colon \mu < \mu_o \\ \text{The one sample t test:} \\ t &= \frac{\overline{x} - \mu_o}{\frac{s}{\sqrt{n}}} \\ H_o \colon p = p_o \end{split}$	data approximately normal or have a large sample size $(n \ge 30)$
Test about a proportion	One population proportion p	sample proportion \hat{p}	categorical (binary)	Is the proportion of females different from 0.5? Is the proportion of students who fail Stat200 less than 0.1?	$\begin{aligned} H_o: p &= p_o \\ H_a: p &\neq p_o \text{ or } H_a: p > p_o \\ \text{or } H_a: p &< p_o \\ \text{The one proportion Z-test:} \end{aligned}$ $z &= \frac{\hat{p} - p_o}{\sqrt{\frac{p_o(1 - p_o)}{n}}}$	$n p_o \ge 10$ and $n (1-p_o) \ge 10$
Test to compare two means	difference in two population means μ_1 - μ_2	difference in two sample means $\overline{x}_1 - \overline{x}_2$	quantitative	Do the mean pulse rates of exercisers and non-exercisers differ? Is the mean EDS score for dropouts greater than the mean EDS score for graduates?	$\begin{aligned} &H_0\colon \mu_1=\mu_2\\ &H_a\colon \mu_1\neq \mu_2 \text{or } H_a\colon \mu_1>\mu_2\\ &\text{or } H_a\colon \mu_1<\mu_2\\ &\text{The two sample t test:} \\ &t=\frac{(\overline{x}_1-\overline{x}_2)-0}{s.e{\overline{x}_1-\overline{x}_2}}\\ &\text{See text, page 445, for the s.e. of the difference} \end{aligned}$	independent samples from the two populations data in each sample are about normal or large samples $(n_i \geq 30)$
Test about a mean with paired data	mean of paired difference μ_D	sample mean of difference \overline{x}_d	quantitative	Is the difference in IQ of pairs of twins zero? Are the pulse rates of people higher after exercise?	$H_{o}: \mu_{D} = 0$ $H_{a}: \mu_{D} \neq 0 \text{ or } H_{a}: \mu_{D} > 0$ $\text{or } H_{a}: \mu_{D} < 0$ $t = \frac{\overline{x}_{d} - \mu_{d}}{s_{d}}$	differences approximately normal or have a large number of pairs $(n \ge 30)$
Test to compare two proportions	difference in two population proportions p ₁ -p ₂	difference in two sample proportions $\hat{p}_1 - \hat{p}_2$	categorical (binary)	Is the percentage of males with lung cancer higher than the percentage of females with lung cancer? Are the percentages of upper- and lower-class binge drinkers different?	$\begin{aligned} &H_o\colon p_1=p_2\\ &H_a\colon p_1\neq p_2 \text{or } H_a\colon p_1>p_2\\ &\text{or } &H_a\colon p_1< p_2\\ &\text{The two proportion z test:} \end{aligned}$ $z=\frac{(\hat{p}_1-\hat{p}_2)-0}{s.e{\hat{p}_1-\hat{p}_2}}$ See notes for s.e. formula	independent samples from the two populations $\hat{p} \ge 10$ and $(1-n)$ $\hat{p} \ge 10$ for each sample (or at least 5 for a two-tailed test).

	Test to compare several means	Population means of the k populations $\mu_1, \mu_2, \dots, \mu_k$	Sample means of the k populations x_1, x_2, \dots, x_k	quantitative	Is there a difference between the mean GPA of Freshman, Sophomore, Junior and Senior classes?	H _o : $\mu_{1}=\mu_{2}=\cdots=\mu_{k}$ H _a : not all the means are equal The F test for one-way ANOVA: $F = \frac{MS_{Between}}{MS_{Within}}$	each population is normally distributed independent samples from the k populations equal population standard deviations
--	--	--	--	--------------	---	---	--

RELATIONSHIPS

Inference	Parameter	Statistic	Type of Data	Examples	Analysis	Conditions
Test about a slope	slope of the population regression line β	sample estimate of the slope b	quantitative	Can height be used to predict weight?	$\begin{aligned} &H_{o}:\beta=0\\ &H_{a}:\beta\neq0 \text{or } H_{a}\colon\beta>0\\ &\text{or } H_{a}\colon\beta<0\\ &\text{The t test with n-2 degrees of freedom:}\\ &t=\frac{b-0}{s.e.(b)} \end{aligned}$	 relationship must be linear the error terms are normally distributed the errors terms have equal variances the error terms are independent of each other
Association between categorical variables	relationship between two or more categorical variables	the observed counts in a two-way table	categorical	Is there a relationship between smoking and lung cancer?	H_{o} : The two variables are not related H_{a} : The two variables are related The chi-square statistic: $\chi^{2} = \sum_{\substack{all \ cells}} \frac{(Observed - Expected)^{2}}{Expected}$	- all expected counts must be at least 5
Association between two quantitative variables	ρ	Pearson's r	quantitative	Is there a linear relationship between height and weight of a person?	$H_o: \rho = 0$ $H_a: \rho \neq 0$ $t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$ n-2 degrees of freedom	- relationship must be linear